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Abstract—There is an increasing penetration of smart phones
within enterprises. Most smart phone users now run both
enterprise as well as personal applications simultaneously on their
phones. However, most of the personal apps that are downloaded
from public market places are hardly tested for enterprise grade
security, and there have been instances of malware appearing in
public markets that steal sensitive user information. Smart phone
platforms such as Android require users to explicitly provide
permissions to applications at install time, yet lack run time
monitoring of permission usage by applications. In this paper,we
present a framework for the run time enforcement of privacy
policies on smart phones, in particular, protecting the privacy of
enterprise data on smart phones. Our privacy policies are defined
in terms of permissible information flows on the phone during
different contexts. This arms users with finer grained control
over information access by different applications. In our policy
framework, an information flow is defined based on the entities
involved in the corresponding inter-process communication(IPC)
viz, the caller, callee and the associated IPC data. The information
flow policy specifies the conditions under which an IPC flow may
be permitted (or denied). Our system tracks information flows at
run time and enforces that only flows satisfying all the current
policies are permitted on the phone. We describe the design and
implementation of our policy based framework in Android, and
present performance evaluation results measuring the overhead
imposed by our framework.

I. INTRODUCTION

Smart phones are now increasingly being used as gateways

to the information infrastructure. Not only do smart phones

provide anywhere, anytime access, they come equipped with

myriad onboard sensors that can assist in context sensi-

tive retrieval of information such as the nearest restaurant.

Smart phones are also being increasingly leveraged by en-

terprises. However, a fundamental distinction of the smart

phone adoption within enterprises compared to the laptop

era is that, unlike laptops, the phones are typically owned

by the employee. Employee ownership markedly constrains

the security capabilities that can be deployed on the phones.

While on the one hand enterprises are encouraging employees

to “Bring Your Own Device(BYOD)” to interact with the

enterprise information infrastructure, on the other hand they

are concerned with the confidentiality of data leaving the

enterprise servers to reside on the employees device. There is

an increasing threat to enterprise data resident on employees’

devices which can now be stolen from the device, either due

to theft of the phone or malware [1]. A new challenge in

the BYOD space is that the enterprise has no control over

applications that are installed on the user device, and cannot

prevent those applications from inappropriately accessing (and

perhaps sending out) enterprise data. Users install random apps

from market places which are not tested for security. Platforms

such as Android perform permission checks only at install time

and the users generally have no choice but to accept all the

permissions sought by an application. There are no run time

controls to prevent applications from misusing the permissions

granted at application installation time. Furthermore, mobile

platforms such as Android have Inter-Process (IPC) and Inter-

Component (ICC) communication as part of core application

functionality, which opens up possibilities for information

leakage via undesirable information flows among apps. For

instance, on Android, a (rogue) gaming app installed by the

user can look for standard locations (on external storage)

where enterprise mail applications store their data, access

them, and then transmit them outside. This will bypass any

access control restrictions on the transmittal by the mail

application to a third party!
In this paper, we propose a policy based framework for

securing information access on smart phones through run time

monitoring and enforcement of information flow policies. Our

system prevents rogue applications from stealing enterprise

data at run time by constraining information access based

on the type of the requesting process as well as the type

of the requested data– enterprise or personal. Furthermore,

our system prevents information leakage through inter-process

communications by restricting the set of allowable IPCs based

on the attributes of the applications involved in the IPC.
Our information flow policies are based on the

1) Inter Process Communication (IPC) call chain defined

by the set of processes/apps requesting access
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2) Attributes of the data viz. enterprise or personal data

3) Phone state determined by various attributes such as

location, battery status etc. The phone state determines

the current policy to be enforced on the phone

The main contributions of our work can be summarized as

1) Policy based framework for system wide run time infor-

mation flow control on smart phones

2) Run time monitoring of information flows

3) Enforcement of holistic information flow policies based

on IPC call chain, data attributes as well as phone state

II. RELATED WORK

There has been considerable research in the recent past

with regards to run-time enforcement of privacy policies

on smartphones. Bugiel et al. [2] propose TrustDroid that

provides domain isolation between enterprise and personal

applications. TrustDroid employs Tomoyo linux based

Mandatory Access Control(MAC) mechanisms in the kernel

to enforce file system as well as UNIX level domain

isolation. Furthermore, a firewall manager in the kernel

prevents personal applications from communicating to other

apps on the phone through sockets. In addition to kernel level

mechanisms, the authors modified the Android framework to

provide isolation at the ICC as well as content providers and

services level as well. However, trustdroid does not secure

dynamic enterprise data, as the MAC domains are setup at

application installation time, and cannot be modified. Lange

et al. [3] propose a virtual machine based approach for

securing smart phone applications. While virtualization based

approaches provide the desired domain isolation, they tend to

be power hungry and require multiple copies of the platform

to run simultaneously preventing consolidation of common

services and data such as phone contacts.

There has also been a lot of work in protecting user data

on phones, and Enck [4] provides a survey of the approaches

available to protect smart phone user privacy. The authors in

[5] describe TaintDroid, which uses dynamic taint analysis to

provide run time monitoring of privacy sensitive information

flows. When sensitive data leaves the device through the

network interface, TaintDroid raises an alert specifying

the type of sensitive data being transmitted as well as the

application responsible for the transmission. TaintDroid uses

well defined sources of information to tag data, where as

in our approach enterprise data could come from any app

on the phone. The authors in [6] present a XACML based

privacy framework for enforcing user privacy policies with

regards to mobile mash-ups accessing device features such

as GPS, camera etc. based on a number of parameters such

as the URL of the mashup, time of day, number of SMS

messages sent by the mashup and so on. Similarly, the

authors in [7] allow users to specify their own run time

constraints that need to be satisfied before providing access to

device capabilities. Jagtap et al. [8] propose using semantic

web based technologies to represent higher abstractions

of context and specify declarative policies to govern the

conditions under which user information may be shared,

and at what granularity. However, the above approaches

constrain device capability or per application information

access and do not consider inter-application control or data

flows. SAINT [9] extends Android security mechanisms to

allow applications enforce install time and run time policies

to protect application interfaces from misuse by other apps.

These policies provide finer grained control to application

developers to control access to their app from other calling

applications. However, the policies do not constrain the data

flow among apps.

Davi et al. in [10] describe privilege escalation attacks on

Android smartphones exposed through vulnerabilities in the

Android Scripting Environment (ASE) that allows malicious

apps to send text messages to premium-rate numbers. Dietz et

al. in [11] present a light weight call-chain tracking system for

Android, that enables the callee to access the entire call chain

from the caller, and enforce its policies based on the received

call chain. XManDroid (eXtended Monitoring on Android)

[12] proposes a security extension to Android’s middleware

to mitigate privilege escalation attacks at run time. Android’s

reference monitor is extended to include a graph based model

of inter-application communication built by runtime monitor-

ing of communication links between the applications. Policies

are specified over the graphical model, and only if all the

policies are satisfied, is the inter-application communication

permitted. While the above approaches constrain the control

flow among apps, they do not consider the corresponding data

flows.

III. PROBLEM STATEMENT

In this section, we describe the problem and motivate the

need for fine grained information flow control in smartphones

based on runtime monitoring. We are primarily concerned

with protecting enterprise data on smart phones which can

be classified along the following dimensions

1) Static Enterprise Data

2) Dynamic Enterprise Data

3) Concurrent execution of Enterprise and Personal Appli-

cations

Static Enterprise Data We define static enterprise data

as data that is natively generated by enterprise applications

such as email, calendar etc. Email is one of the commonly

used enterprise applications and therefore securing emails and

the corresponding attachments is critical. Enterprise emails

typically contain a lot of sensitive data both in the body as well

as attached documents. While most enterprise email clients

encrypt and protect email data from arbitrary accesses, clients

typically provide a facility for the attached documents to be

decrypted and exported out of the app. These attachments are

stored in public directories such as the sdcard, and the appli-

cation no longer has control over the exported data. In most

cases, static enterprise data can be secured by simple access

control policies that enforce that only enterprise applications

can access enterprise data.

301301301



Dynamic Enterprise Data refers to data that is typically not

generated by enterprise applications, but rather generated by

personal or system apps, and become sensitive to the enterprise

only at certain times, or broadly, only under certain contexts.

One such piece of information is location information. For

example, consider a rural mobile banking agent who uses

an enterprise app to record transactions as he goes around

villages collecting and distributing money. Typically, any

personal application that has the required android permissions

would have access to the location information. However, when

the agent is running the banking app, location information

becomes enterprise sensitive, and should be accessible only

to the banking app, and not to third party personal apps

in order to protect the physical security of the agent (The

threat model assumes a malicious app can continuously report

location information to a third party server, which can be

used for stalking the agent). In other words, the sensitivity of

location information dynamically changes, and only privileged

enterprise applications should have access to the information.

Securing the concurrent execution of Personal and En-
terprise Apps The concurrent execution of enterprise and

personal apps on the phone raises yet another serious privacy

challenge for enterprise data resident on the phones. Android

supports collaboration between applications through Inter-

Component(ICC) and Inter-Process Communication (IPC).

Application developers are tasked with protecting the inter-

faces of their applications through permissions, and this is

typically error prone as most developers are not security

experts, thereby opening the possibilities for privilege esca-

lation attacks. From an enterprise perspective, inter-process

communication is a security threat due to the potential of

information leakage when an enterprise app calls the services

of a personal app along with the associated enterprise data.

Existing solutions such as [11] track the provenance of call

chains and provide developers an access control primitive to

prevent privilege escalation, yet these solutions are indepen-

dent of the data flow triggered by the ICC. For example, an

enterprise app should not be allowed to use facebook to upload

enterprise pictures, while it is permissible to use an enterprise

service to upload the same pictures. In this case, the enterprise

sensitivity of the picture determines which service can be used

for uploading. Similarly, privilege escalation attacks can be

used to infiltrate enterprise servers with personal and malicious

content, when a malicious app uses the unprotected interfaces

of the enterprise’s uploading service to upload malicious

content.

A. Threat Model

The threat model we consider in this paper involves mali-

cious third party apps trying to steal enterprise data, both static

and dynamic, resident on the phone, as well as infiltrating

enterprise servers with malicious content. We assume that the

end user is trusted although they may be benign in installing

malicious third party apps. Similarly, we assume that the

enterprise apps are trusted although they may be exposing

unprotected interfaces that can be exploited by malicious apps.

IV. POLICY BASED FRAMEWORK

In this section we describe the policy abstractions that en-

able the high level specification of permitted information flows

to secure enterprise data on phones. Our policies constrain

information flows based on context and involve the following

entities

• The caller application

• The callee application

• Associated IPC data and its attributes such as provenance

• Phone State such as location,time and the set of currently

running apps

A. Application Classification

Our framework requires that apps be classified as enterprise

or personal. There are multiple mechanisms available for

classifying apps as enterprise based on parameters such as

market source, developer signature, or apps pushed directly

by the enterprise.

B. Data Classification

Similar to application classification, data on the phone

needs to be classified.

Static Enterprise Data Static enterprise data is identified

through the writing application, in that all data generated

by an enterprise application is classified as enterprise data.

Android applications write data to standard locations in the

phone memory as well as external storage, and from the

application’s package name we can locate static enterprise

data generated by the application.

Dynamic Enterprise Data: Unlike static data, dynamic

enterprise data is determined by context as well as current

data flows in the phone. We continuously monitor data

flows at run time and classify data that has been opened,

and hence tainted, by an enterprise app as enterprise data

irrespective of the application that initially created the

data. While this approach could potentially lead to a large

number of false positives, we choose to be conservative

with regards to protecting enterprise data. Similarly, we

classify data obtained from an enterprise server as enterprise

data e.g. files downloaded by the browser from the URL

“http://www.ibm.com”.

We will next describe our policies that govern the following

inter-process communications

Starting Activities: Android applications can start another

application’s activity or service to accomplish their task. For

example, the contacts application can start the phone app

to initiate a phone call. From a security perspective, an

enterprise application might want to specify that it can be

started only by other enterprise applications, for example, to

prevent untrustworthy data from personal apps infiltrating the

enterprise servers. While android permissions can be used

to protect interfaces, permissions are always requested and

granted at install time, and there are no run time controls on

permission usage. Further, the app might specify that it can be
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started only under a certain device context. Here, we define

a device context as a specific device configuration state such

as being physically located inside the enterprise, connected to

corporate wifi, turning off certain features such as bluetooth,

camera, microphone etc. Contexts can be switched on or off

either manually by the user or automatically by policy. More

generally, our policies can specify which apps can start another

app based on the attributes of the source and destination apps

such as the app’s signature, set of permissions requested etc.

[9]. The access control policy to start an enterprise app can

be expressed as follows

startApp(tgtApp,srcApp):

tgtApp.type=Enterprise ∧
System.DeviceContext=EnterpriseContext
∧ srcApp.type=Enterprise/System →
allow(tgtApp,srcApp)

The above policy is interpreted as follows. An applica-

tion or component, scrApp, is allowed to start/bind to an

enterprise app or component, tgtApp, only if srcApp is an

enterprise/system app and the device is in Enterprise Context.

Receiver Updates: Android allows applications to register

receivers to asynchronously receive updates from the

underlying system. These receivers could range from coarse

grained Broadcast receivers that receive system wide updates

from the Android framework to fine grained application

specific receivers such as location receivers that receive

specific updates from the underlying location manager. To

prevent privacy threats that arise from intent hijacking, it

becomes critical to specify and enforce policies that restrict

the set of receivers that are called back when an event

occurs. In other words, only receivers that satisfy the current

policy should be allowed to receive event updates from

the underlying system. For example, when an enterprise

application takes a picture, only other enterprise apps should

be notified of “picture taken” event. Such a policy is expressed

as follows

recvUpdate(tgtApp,srcApp,event):

tgtApp.type=Enterprise ∧
System.DeviceContext=EnterpriseContext
∧ srcApp.type=Enterprise ∧
event.Action="Picture Taken"
→ allow(tgtApp,srcApp)

While it is possible to express more generic policies re-

garding broadcast receivers, such as those in [9], in this work

we focus on policies that govern finer granularity application

specific receivers such as location receivers that an application

registers with the location manager. Recalling the rural mobile

banking scenario, in order to protect the physical security of

the agent, the enterprise might require that only an enterprise

app have access to location information in the enterprise

context. This policy is expressed in our framework as follows

locationAccess(app,GPS):

app.type=Enterprise ∧

System.DeviceContext=EnterpriseContext
→ allow(app,GPS)

Data Access Policy: Enterprise data resident on the phone

must be protected from unauthorized applications. Data access

policies specify the conditions under which enterprise data on

the phone may be accessed. Our Enterprise policy specifies

that enterprise files can be accessed only by enterprise

applications with in the Enterprise Context. Such a policy

can be expressed as follows

dataAccess(app,data):

app.type=Enterprise ∧
System.DeviceContext=EnterpriseContext
∧ app.type=Enterprise → allow(app,Data)

dataAccess(app,data):

data.type=Enterprise ∧ app.type=Personal →
deny(app,Data)

IPC Call Chain Data Handling: IPC call chains typically

contain the data or, URI’s to the data, to act upon. To enforce

privacy, the enterprise might want to restrict information

flows based on both the IPC call chain as well as data in the

IPC. For example, the enterprise might want to enforce that

only data from enterprise applications be uploaded to their

back end servers. Also the enterprise needs to ensure that data

created on the device, and uploaded to the enterprise servers

retain their integrity and are not modified by non-enterprise

apps. In other words, data tainted by personal apps should

not be involved in an IPC that invokes an enterprise app

to upload data to the enterprise servers. This policy can be

expressed in our framework as follows

IPCDataAccess(srcApp,tgtApp,data):

data.taint!=Personal ∧
srcApp.type=Enterprise ∧
tgtApp.type=Enterprise
→ allow(srcApp,tgtApp,data)

IPC DataAccess(srcApp,tgtApp,data):

data.taint=Personal ∧
tgtApp.type=Enterprise →
deny(srcApp,tgtApp,data)

V. SYSTEM ARCHITECTURE AND IMPLEMENTATION

In this section, we describe the design and implementation

of our framework. Figure 2 shows the various components

of our system architecture. Our framework builds on top of

standard Android security mechanisms and consists of the

following additional architectural blocks

The Policy Manager: The policy manager is responsible for

storing and managing the various policies specified by the

user. At system boot, the policy manager reads in policies

from a file and stores it in its internal data structures. Figure 1

shows a xml representation of our policies that is used by the
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Fig. 1. XML Representation of policy to prevent data leak of enterprise data
to personal apps

policy manager. An initialization policy specifies the device

configuration to be effected on the phone to place it in the

desired start up context. When an ICC occurs (1), the reference

monitor in Android’s Activity Manager Service calls the Policy

manager. The policy manager inspects the intent and extracts

the ICC context composed of the caller and callee components,

as well as the corresponding data and its attributes such as

the taint set, from the appropriate taint tracking service (2).

The policy manager retrieves the appropriate policies based

on the ICC context, and contacts the package manager (3)

and other phone services to retrieve the current system state

(4) that is used in policy evaluation. The policy manager

evaluates all the retrieved policies, and if all the evaluated

policies permit the ICC, the policy manager returns with a

permit (5), and Android’s standard ICC permission checks are

performed (6). If Android’s permission checks also evaluate

to true, the ICC is permitted to continue (7). If any of the

retrieved policies evaluates to false, or the standard Android

permission checks fail, the ICC is denied to continue and an

error returned to the caller. Similar checks are performed in

the location manager service when the underlying hardware

generates location change events.

TaintTracker and File System Reference Monitor: The taint-

Tracker is responsible for maintaining the provenance of data.

We implement the taint tracking service as a linux kernel

module in Android’s underlying linux kernel. We intercept the

file open system call to perform file level taint tracking based

on the user id of the calling application. For each file stored

on external storage, we maintain a taint set that identifies

the set of Android applications, based on their unique uids,

that have opened the file. The taint set for a file initially

contains the user id of the process that created the file. For

taint propagation, at each system call interception, we extract

the user id of the caller and store the extracted user id in the

file’s taint set. Given the taint set of a file, we can contact the

package manager service to obtain the set of enterprise and

personal applications that have opened the file. If the taint set

of a file contains an enterprise application, we classify the

corresponding data as enterprise. When an IPC involving file

system data occurs, the policy manager retrieves and evaluate

the policies corresponding to the file access. Only if all the

Fig. 2. System Architecture

retrieved data access policies evaluate to true, is the IPC

permitted.

VI. EVALUATION

In this section, we describe our experiments to evaluate

the performance overhead posed by our policy framework.

All experiments were conducted on a Nexus One running

Android 2.2. For our policy evaluation, we modified the

android framework to insert our policy hooks in the Android

Application Manager Service as well as the Location Manager

Service, before calling the standard android security policy

evaluation. File-level taint tracking was enabled through a

loadable kernel module. Each experiment was conducted five

times, and mean values reported.

A. Application Benchmarks

We wrote a set of applications to isolate the performance

overhead due to different types of policy checks.

Application Load Time In this experiment, we measure the

duration elapsed between starting an activity and when the

activity is actually displayed. Our experiment consists of

two apps where the first app broadcasts an intent to start

the target app’s activity. This duration includes the policy

evaluation overhead as well as the time taken by Android’s

Intent resolver.

Figure 3 shows the performance overhead of policy checks.

As expected, the overhead experienced (122 ms) with both the

middleware and kernel policy checks turned on is much higher

compared to the overhead from middleware level only policy

checks(35ms). This is due to the fact that, with kernel level

policy checks, every file access, including those made by the

class loader while loading the target app’s dex files, is checked

for policy evaluation as well as taint propagation, resulting in

increased overhead.

Location Update Policy We wrote a simple app that registers

a listener for location updates from the GPS. We also wrote a

mock GPS provider, that periodically reads GPS co-ordinates

from a file and updates the GPS location. We measure the

304304304



Fig. 3. Performance Overhead of Application Level Policy Checks (in ms)

Fig. 4. Performance Overhead of Location Policy Checks (in ms)

duration from the start of the app till the last location update is

received. Our location policy evaluation only updates listeners

that satisfy the current policy. From figure 4, we find that there

is negligible overhead (70ms) imposed due to location policy

evaluation in the Android middleware. On the other hand, the

high overhead imposed by the file level taint tracking could

be attributed to our experimental set up in which the location

file is periodically opened to generate location updates.

VII. FUTURE WORK AND CONCLUSION

In this paper, we address the problem of securing enterprise

data, static and dynamic, on smart phones. To this end, we

have presented a policy based system for run time information

flow control on smart phones. Our policies are generic and are

based on the information flow context viz. caller and callee

applications, as well as attributes of the data and phone state.

Our system involves tracking information flows at run time and

enforcing privacy policies to prevent the leakage of enterprise

data from smart phones, as well as the infiltration of personal

content onto enterprise servers. In future work, we plan to

work on policy management for smart phones. In our current

work, the number of policies may grow unwieldly and could

potentially result in policy conflicts. We would like to point

out there is an inherent trade off between language simplicity

and conflict resolution [13], [14], and given the simplicity

of our language, conflict resolution of our policies should be

decidable. Additionally, we could solicit user input to choose

between allowing or denying an information access when there

are policy conflicts, which would enable our system to learn

from user input. In future work, we plan to set up user studies

to understand the impact of our performance overhead on

user experience as well as quantify the amount of security

our framework provides to enterprise data under real world

scenarios.
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