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Abstract—The current content provision methods and associ-
ated pricing and business models are challenged by the traffic
requirements anticipated for future “data intensive” services. In
order to deliver substantially higher peak rates operators will
need to deploy a much denser infrastructure and/or acquire more
spectrum, thus significantly increasing their CAPEX and OPEX
and reducing revenues. To improve the utilization of available net-
work resources this paper presents ActiveCast, a disruptive content
delivery paradigm that supports opportunistic content pre-fetching
by introducing semantic and context awareness in the currently
“agnostic” networking paradigm. The experimental investigations
presented in the paper focus on mobile video provision and a
content provider, integrated with Facebook and YouTube, has been
developed and used to identify socially relevant content for a set
of test users. Part of the studies presented in the paper aim at
experimentally understanding the structure of the energy costs
associated with pre-fetching and on defining a delivery strategy that
allows controlling the amount of energy invested. A comparison
between a centralized implementation, in which pre-fetching is
coordinated by the mobile operators, and an Over-The-Top (OTT)
implementation of ActiveCast are also presented. The results show
that complementing the context information available at individual
user terminals with traffic information, shared by mobile operators
through the ActiveCast API, can substantially reduce the energy
costs of content delivery, as compared with ‘“on demand” video
streaming. Additionally, opportunistically exploiting connections
with WiFi APs can amplify the gains already achievable by pre-
fetching on wide area networks.

I. INTRODUCTION

Recent years have seen an unprecedented growth in the
adoption of mobile data services. This can be attributed to
both the enormous and rapid technological development seen
on the user equipment side, i.e. the post iPhone growth of
offering for smartphones, and the pricing strategy, based on
flat-rate subscription, adopted by most of mobile operators to
incentivize the usage of mobile Internet. The success of mobile
data is also reflected in a drastic decrease of traffic shares for
voice services, which no longer dominate the mobile usage.
However, while voice and SMS are significantly more profitable
than mobile Internet services, the current trends clearly indicate
that operators are losing increasing shares of their revenues due
to users’ adoption of substitute services, which are provided
through mobile apps and therefore included in their mobile
Internet subscriptions. Moreover, about 50% of the current traffic
on user devices is constituted by video streaming services and
this is expected to grow up to 70% of the total traffic by 2016
[1]. The success of video content depends on the widespread
adoption of innovative services capitalizing on user-generated
content, i.e. YouTube, on the new avenues for “social” sharing of
content, e.g. Facebook and Twitter, and on the adoption of “on
demand” content distribution by the major content providers,
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e.g. newscasting, TV programs and films. On the other hand,
since the video resolution on users’ devices is rapidly increasing,
the average size of the videos to be served to match such
resolution is becoming substantially larger.

In order to deliver increased user experience mobile operators
have been investing significantly in upgrading their network
infrastructure, with the goal of increasing the peak downlink
rates to users’ devices. This has been translated in deploying
additional Base Stations (BSs) to achieve a denser infrastructure,
in bidding for additional spectrum, in adopting new and more
efficient radio technologies, e.g. LTE. One critical problem the
operators face is that, with increased file sizes (e.g. HD videos)
and service requirements, the traffic currently served by the
network tends to be very “bursty”, thus, a “classical” network
dimensioning approach, which targets “peak hour” loads, is
likely to lead to over-provisioning of resources, with most of
the cells experiencing a significant excess of capacity during
large portions of the day. Following nowadays trends, future
data intensive services are likely to pose an even greater threat to
the current service provision paradigm and associated business
model. In fact, one of the keys to the explosion of mobile
Internet is flat rate pricing, which on the other hand decouples
the revenue intakes of operators from the amount of traffic
circulating in their network. An important observation is that
the current content provision and business models do not scale
well with increased future traffic requirements, since to serve
the expectedly higher datarate requirements of future services,
operator will need to either deploy more BSs or acquire more
spectrum, which in turn will significantly increase CAPEX and
OPEX and reduce revenues. Current proposals are perceived
as rather myopic, since they are essentially aiming either at
changing the current pricing strategy, e.g. introducing service
prices proportional to the transferred bits, or limiting the access
to some service, e.g. data intensive services or services which
can substitute high margin services like voice or SMS.

A. Context-aware Content Delivery

An alternative approach would consist of transforming the
currently agnostic content delivery paradigm (not aware of
both content and service semantics and users’, networks’ and
terminals’ contexts) into semantic- and context-aware. In this
respect, this paper proposes a novel content delivery paradigm
called ActiveCast, designed to support a range of embodiments
of opportunistic content pre-fetching over mobile networks.

Content pre-fetching has the potential to deliver high levels of
Quality of Experience (QoE) at low network deployment costs,
since it significantly improves the utilization of the available ra-
dio infrastructure (e.g see [2], [3], [4]). By decoupling the times
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in which content is delivered to the terminals from the ones in
which the content is accessed by the end users, varying network
conditions and different radio interfaces can be opportunistically
exploited for optimizing various aspects associated with the
content delivery. For example, (parts of) content likely to be
accessed by the end users in the near future can be delivered to
users terminals while these are within coverage of cells exposed
to low traffic loads, or while the terminals are within range of
high speed access points. Some of the current proposals (e.g. [5]
and [6]) are precisely targeting systems for content pre-fetching
which are capable of performing opportunistic content delivery
on various available networks.

An important requirement for achieving the aforementioned
gains is the capability of correctly predicting which content is
more likely to be requested and accessed by the end users.
If future user demand can be accurately anticipated, content
can be opportunistically delivered at datarates that are likely to
be higher than with the “on-demand” provision, thus lowering
the average energy costs associated with content retrieval and
delivering “instantaneous gratification” to the end users, e.g. no
interruptions during a video playback. Moreover, by exploiting
locations and times in which the networks experience excess
of resources, this approach can potentially reduce the traffic
loads to be served during peak hours. However, if the content
prediction is incorrect, content pre-fetching might lead to a
significant increase in energy expenditures at both network
and terminal sides. Given the possibility of estimating future
content requests, another aspect which has great importance for
effectively performing content pre-fetching is the possibility of
gathering network and terminal context information and use it
to perform opportunistic content retrieval decisions. Schulman
et al., used signal strength as a context parameter to design a
pre-fetching system and have shown energy savings up to 60%
[7]. This means that a “‘context manager” is required to monitor
the network performances that are achieved while performing
content delivery operations, to monitor terminal context, e.g.
battery levels and/or screen resolution, to optimize the retrieved
video quality and the overall energy costs, to gather information
about alternative networks (e.g. WiFi APs or LTE BSs) that are
available to serve the content while meeting different service
requirements and performance profiles.

II. PROBLEM STATEMENT

Since content prediction is one of the key aspects of content
pre-fetching, in this paper we propose, implement and experi-
mentally analyze a radically novel approach, in which content
prediction is “outsourced” to the content providers. In recent
literature [5] content pre-fetching has been typically considered
performed by an entity, located either at the terminal side or in a
server location, which monitors and records user traffic and uses
the collected information to predict future user requests. While
this approach is likely to create significant privacy concerns
and therefore limited user adoption, it puts also significantly
increased requirements, in terms of data gathering and pro-
cessing, on the content delivery system. However, individual
content providers are already using models of users’ content
requests (e.g. collaborative filtering) and have already available
significant amount of information, concerning both individual
users and overall user population, which could be effectively
used for pre-fetching purposes. In the approach considered in
our work, the content providers can submit “pointers” to data

objects likely to be accessed by specific users using a novel
ActiveCast APIL. This has been implemented, for the Android
platform, to perform real life testing of the proposed context-
aware content delivery schemes. The experiments illustrated
in this paper are designed to bring an understanding of the
potential benefits of this technology for users, content providers
and mobile operators, with particular focus on video services.

One of the goals of this paper is to quantify the potential
energy savings that can be achieved, at the terminal side, by
adopting the proposed ActiveCast API for supporting content
pre-fetching. The experimental studies have been comparing the
current video streaming approach with different context-aware
video pre-fetching strategies. Two alternative embodiments of
content pre-fetching are considered: one in which pre-fetching is
performed Over-The-Top (OTT), i.e. without the active involve-
ment of a mobile operator, and another one in which information
from both operator and mobile terminals is used by the context
manager to activate the pre-fetching of specific video items.
While the performances of the OTT case are experimentally
evaluated using a context manager application developed for
Android phones, the performances of the latter embodiment are
evaluated through emulation, using data only gathered through
terminal measurements, since the authors of the paper do not
have access to information available at the operator side. The
main purpose of this comparison is to understand the potential
performance losses, e.g. increased energy costs due to context
gathering operations at the terminal side (probes), that could be
introduced by the distributed OTT embodiment.

III. ENERGY MODEL

To estimate the energy costs associated with the activations
of the wireless interfaces in the terminals, while performing
either streaming or pre-fetching content delivery, the PowerTutor
[8] application was used. PowerTutor implements a usage-
based power model in which a given wireless interface is
associated with a fixed cost per unit of time. The cost varies
with the specific mode of activation for the selected interface.
For example, the 3G radio interface is characterized by different
energy cost coefficients, depending on whether the interface is
on the IDLE, FACH or DCH mode. Similarly the WiFi interface
has a low and a high power mode. By keeping track of the
duration in time of the various modes, the energy model adopted
by PowerTutor can provide an accurate estimate of the energy
costs for completing the delivery of a specific data object.

The model is further completed by the inclusion of the
“tail time” component to the energy budget (see [9] for more
information). The tail time corresponds to the time spent in one
of the higher power states, while no data is transferred to a user
terminal, before its demotion to the idle state. The duration of
the tail time depends on specific operator implementation.

In order to simplify the model, we approximated the different
energy cost coefficients for the active modes (e.g. FACH and
DCH) with a single coefficient ¢,, extracted by fitting the
experimental energy data, and representing the average cost
per second of active data reception. This was done to create
a mapping between the currently achievable datarate and the
expected energy costs for completing the download of a specific
data object at that rate, which is a critical part of our proposed
pre-fetching strategy. Considering both the active transfer and
tail time phases, Eqn. 1 summarizes the energy cost E(B),
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Fig. 1. Different realizations of energy costs E(B’, R, Nt) for different phones
and radio interfaces, all obtained for B = 27MBytes and N = 1. The
realization points R?;C];\, and RgV](,F * correspond respectively to the Galaxy
Nexus phone on 3G and WiFi interfaces while the points identified by R?VGl are
obtained with the Nexus One on 3G. The curves obtained with the linear model
of Eqn. 1 are also shown for the Nexus One (M ﬁ,cl") and the Galaxy Nexus
(M, gc];v) both on 3G. Note the accordance between the energy costs associated
with the proposed model and the ones quantified with PowerTutor for the various
realizations.

required for retrieving a data object of size B Bytes:
E(B,R,N,) = coxT+ci+Ny(B) = %*B-i—ct*Nt(B), (1)

where T’z represents the total time required to download the
data object of size B, c¢; the energy cost associated with the
duration of a tail time, V;(B), the number of times in which the
download has encountered a tail time during the retrieval of the
object and R is the average datarate experienced during the ac-
tive data transfer phases. In Fig. 1, different realization of energy
estimations with PowerTutor and the corresponding F(B) fitting
curves are shown for different terminals and different wireless
interfaces, for a data object of size B = 27MBytes. During each
realization of data download both the average datarate and the
number of tail time occurrences have been recorded, together
with the total energy costs associated with the content delivery.
Note that the energy profiles vary with different terminal types
(e.g. the realizations R23; for the Galaxy Nexus and the R34
for the Nexus One phones) and different radio interfaces (e.g
the realizations R for the Galaxy Nexus on WiFi). In
practice, the specific energy profiles associated with the various
radio interfaces available in a given terminal can be learned
in time by a simple software agent recording and profiling
the various energy costs for content delivery. Considering the
realizations shown in Fig. 1, the cost coefficients for the Nexus
One on 3G have been estimated to be ¢, = 0.9656 Watts and
¢y = 2.5169 Joules, while for the Galaxy Nexus on the same
interface are ¢, = 0.5739 Watts and ¢; = 4.16 Joules. Due to
very moderate traffic variations on the WiFi AP used for the
experiments, all realizations concerning the WiFi interface are
concentrated around 1.4 MBps. In general, due to significantly
higher datarates achievable on WiFi, content pre-fetching using
local networks has the potential of reducing content download
energy costs of some order of magnitude as compared to both
pre-fetching and “on demand” content delivery on 3G.

IV. CONTENT DELIVERY API

The purpose of the proposed content delivery API is to create
an effective interface for sharing information, among the differ-

ent content delivery stakeholders, to support and to optimize the
content pre-fetching operations. In particular, the stakeholders
considered in our approach include content providers, end users
and their terminals and mobile operators. The exchange of
information is also supported and facilitated by the presence
of an ActiveCast server and an ActiveCast software application
running on the end users’ terminals.

A. Content identification

In the proposed model, various content providers are in com-
munication, through the ActiveCast API, with the ActiveCast
server. The providers are in charge of both identifying the
data objects that are more likely to be of interest for specific
users and associating with them an access probability value
(e.g. mapped into a priority number between 1 and 5), which
could be based on historic consumption behavior specific for
the users, and/or based on the overall population (or a subset
of) for that content provider. An additional piece of information,
which might be relevant in some implementations, is represented
by an “expiration date”, indicating the latest time in which the
content should reach the intended user terminals. The complete
information concerning a specific data object, together with its
URL and the ID of the intended recipient, can be communicated
to the ActiveCast server using the ActiveCast API primitives,
which effectively replace the post and ger functionalities cur-
rently available at the content provider side. Among various
functionalities already implemented, content providers can also
track the status of their submitted content pre-fetching jobs,
e.g. receiving notifications when the submitted content reaches
the intended user terminals or when the users access it. For
some data types, content providers can also submit an encrypted
version of the content, which is then decrypted upon user access
to the content stored in the terminal cache. In the current design,
the transfer of decryption keys and billing operations can be
performed directly between users and content providers, without
direct involvement of the ActiveCast system.

B. Mapping access probability into pre-fetching context

Once the information concerning a new content pre-fetching
job reaches the ActiveCast server, it is forwarded to the terminal
of the intended recipient, which adds the new pre-fetching
request to its queue of pending data objects. The ActiveCast ter-
minal application contains also software modules for monitoring
terminal and network contexts. This software has the capability
of monitoring and recording a series of service variables, in-
cluding cell ID, availability of WiFi access, signal quality with
different mobile networks, battery level, user activity and to
estimate currently achievable datarates via probing. Historical
information concerning datarates achieved in specific locations
and times of the day, together with information concerning the
time of user access to specific services, durations of the sessions
and amount of data consumed are also potentially available to
the terminal context manager. One of the critical decisions to be
performed by the ActiveCast terminal application is the mapping
of the access probability, associated with a content item, into a
target datarate and a possible association with a specific network
interface to perform content retrieval.

An example of a mapping relationship between these quanti-
ties is described in the following equation:

R(Iz) = Rl {E(BaRv Nt)/E(BvRavaNt) S pa(Ii)}ﬂ (2)
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where p,(I;) is the access probability associated to the item
I, and R,, is the average datarate achievable when items
are consumed “on demand”. The latter quantity can also be
computed specifically for given item types (e.g. videos) and/or
for content providers (e.g. YouTube videos or CNN videos).
Eqn. 2 is here introduced to limit the maximum energy cost to
be invested for pre-fetching a specific data item with a given
access probability. For example, in order to break-even from an
energetic perspective, if an item has 20% probability of being
consumed by the end user the system should aim at pre-fetching
it with an average datarate leading to 1/5 (or less) of the energy
cost associated to its “on demand” consumption.

Depending on the specific implementation, the access prob-
abilities, submitted by the content providers to describe the
importance of their items for a given user, can be modified
in the user terminal by an entity called “storage manager”.
This monitors the user’s access to the content stored in the
terminal cache and keeps tracks of the real access probabilities to
different data objects submitted by the various content providers.

C. Context monitoring

In the considered approach, mobile operators can also be
interfaced through the API to the ActiveCast servers and ex-
change updated information concerning traffic loads at specific
BSs. This information can be used to support pre-fetching
operations by complementing the network context information
which is available in individual user terminals. In particular
in the OTT case, i.e. without operator support, user terminals
can only gather updated information on achievable datarates by
initiating content pre-fetching while simultaneously monitoring
the datarate performances within given time windows of a few
seconds. This implies that in order to estimate if the currently
achievable datarate matches the one required to meet the energy
budget allocated for completing the pre-fetching of a given item
(gathering network context information), user terminals need to
perform a partial content download, which in many cases can
introduce additional energy costs. If the target average datarate
is not met, the content pre-fetching operations need to be inter-
rupted, leading to energy inefficiencies introduced by both lower
activation datarates and additional tail times. To compensate for
the lower activation datarates, the ActiveCast terminal app can
increase the target datarate for that item, proportionally to the
amount of data still remaining to be downloaded. In general, the
OTT approach might lead to suboptimal pre-fetching decisions.
On the other hand, having access to updated traffic information
estimates from mobile operators can be very valuable to reduce
the amount of traffic and energy spent for gathering updated
network context information.

V. IMPLEMENTATION

The content delivery system is implemented for Android
Operating System on the mobile terminal and the server side
runs with the help ruby on rails. We used a HP ProLiant DL.380
G7 rack server to host the ActiveCast webapp. We used a rooted
Nexus One and a stock Galaxy Nexus running Android 2.3.7 and
4.1.1 respectively. The overall architecture is shown in Fig.2,
where three planes are highlighted. The user plane represents
the terminal side of the content delivery system. There, the
“Connection Analyzer” is an entity designed for gathering
network and terminal context information and for managing
the content retrieval operations. These include maintaining the

Provider Plane Cloud Plane User Plane
~ Content | S Mobile Phone
Provider Content

L—J Connection
]
Manager

A y € 4 _4

Fig. 2. ActiveCast system architecture, API and apps. The various system
components are grouped into “Provider Plane”, “Cloud Plane” and “User Plane”.

S
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queue of pending pre-fetching jobs and performing decisions
on whether to start, pause or stop the downloads of specific
data objects. The “storage manager”, instead, is in charge of
maintaining the memory cache in which the various pre-fetched
items are stored. Among other tasks, it keeps track of the user’s
accesses to the various items stored in the cache and implements
a cache policy to remove data objects when the cache is full.

The cloud plane includes the server in which the content
is stored (outside the ActiveCast system) and also the Ac-
tiveCast cloud server. The communication between the Active-
Cast system and the terminal application is performed using
Google Cloud Messaging (GCM). Finally, the provider plane
represents the domain of the various content providers and
the service providers (e.g. mobile operators and local access
providers). Since currently no content provider has access to
the ActiveCast API, for testing purposes we implemented our
own content provider, “Social Video”, a third party application
integrated with Facebook and designed to identify YouTube
videos populating the “feed” of the Facebook accounts that have
registered with the ActiveCast system and subscribed to content
pre-fetching services. The ActiveCast server polls at periodic
intervals the registered accounts to identify any new videos
populating their feeds. Whenever a new videos is detected for a
specific user, a new content pre-fetching entry is created (with
all information described in Section IV-A) and transmitted to
the mobile terminal corresponding to that specific Facebook
account. Later on, whenever the user tries to access the video,
the mobile app serves the content from the local cache if the
video has already been entirely pre-fetched.

During the actual content download operations, the imple-
mented OTT strategy compares the currently achievable datarate
R with the target datarate R, computed to maintain a spe-
cific energy budget as described in Section IV-B. The average
datarate is monitored every 5 seconds during the active transfer
of content. Whenever it falls below the R threshold the data
transfer is paused and resumed only after 7 seconds. This
quantity is defined as the “wake-up timer” and throughout the
experiments described in this paper this timer was set to a
constant value equal to thirty seconds. In general, the value of
T can vary according to an adaptive scheme where the wake up
time increases if the previous n-attempts to transfer failed to
meet the target.

VI. EVALUATION

A. Video provision performances

This section describes the comparison between the perfor-
mances of pre-fetching and current streaming solutions, for the
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Fig. 3. Total energy costs, as function of R, for delivering a data object of

size B = 27MBytes. In this figure a subset of experimental realizations (Rgcj;\,),
organized in function of specific numbers of experienced tail time occurrences
(ie. Ny = 1,5,10), is shown together with the corresponding energy curves
obtained with the model of Eqn. 1 and a number of realizations for the streaming
content provision via YouTube.
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Fig. 4. Average time to complete the content pre-fetching TP 7 as function of
different pre-fetching target datarates R, for an item of size B = 27MBytes.

provision of YouTube videos. The results concerning the pre-
fetching energy costs are shown in Fig. 3, for different values of
R achieved during the content download. Note that the actual en-
ergy realizations R%Cfv are grouped based on the number of tail
time occurrences, with focus on those having N, =1, Ny =5
and N; = 10. The various realizations are obtained considering a
set of values for the target datarate R, ranging between 300KBps
and 800KBps, and are recorded during several days at different
times (thus exposed to different average traffic loads in the
serving cell). In the same Fig. we have also plotted the energy
values of the realizations corresponding to standard YouTube
video streaming content provision. The results show that the
current streaming solutions are extremely inefficient from an
energetic perspective, leading to increased energy costs by a
factor between 1.33 and about 5 times, as compared to video
pre-fetching performed on the same 3G interface. Apart from
opportunistically exploiting higher datarates for downloading
portions of a video, the gains of content pre-fetching also depend
on the specific policy adopted by YouTube (but also by other
providers) for minimizing their dimensioning costs: after an
initial burst in which a given percentage of the video is moved
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Fig. 5. Cumulative distribution function for the energy costs of pre-fetching a
video object of size B = 27MBytes (E(B, R, Ny)), for botp the OTT and the
OCP implementations and for different datarate thresholds R.
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Fig. 6.  Cumulative distribution function the number of tail time occurrences
N when pre-fetching a video object of size B = 27MBytes (E(B, R, N¢)),

for both the OTT and the OCP implementations and for different thresholds R.

in the streaming buffer at the highest achievable speed, the
bandwidth allocated by the YouTube server rapidly converge
to the bitrate of the video.

Apart from the quantification of its potential energy savings it
is also relevant to understand the amount of time T},¢, required
in average by content pre-fetching to completely pre-load a
video of size B = 27MBytes in the user terminal. This result is
shown in Fig. 4. There it is shown that it might take between
slightly more than a minute and about six minutes, depending
on the targeted datarate R. The minimum value is obtained
for R = 400KBps, which closely corresponds to the average
datarate R achieved across all realizations. In particular, for
values of R lower than R, longer pre-fetching durations depend
on the fact that in most of the cases the pre-fetching operations
are performed at slower speeds. For values of R greater than R,
instead, the longer durations of the pre-fetching phases depend
on the difficulty of achieving the wanted target rates, which in
turns increases the number of tail time occurrences (with an
associated waiting time of 30 seconds for each occurrence).
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B. Limits of the OTT approach

To evaluate the potential impact of network-context gathering
through probing (see Section IV-C) on the performances of
the proposed OTT content prefetching scheme, we performed
a simulated investigation comparing our proposed OTT scheme
with an ideal case, called Operator Controlled Pre-fetching
(OCP). In the OCP scheme the content pre-fetching operations
are coordinated by a mobile operator, which is considered
both capable of ideally estimating the datarate achievable by
a mobile terminal and aware of the target datarate required for
downloading a pending data object. Whenever the achievable
datarate exceeds the target R, the mobile operator triggers the
download of the content by notifying the terminal app. After the
content pre-fetching is initiated, it is the terminal app that keeps
track of the average datarate in time intervals of 5 seconds. As
soon as R falls below R the terminal pauses the download, until
a new activation opportunity is notified by the mobile operator.

The comparison between the performances of our proposed
OTT scheme and the ideal OCP has been performed by simula-
tion, considering as input real datarate measurements, recorded
by our testing devices in a continuous download of data for 4
hours using the Melange application [2].

The energy cost for completing the pre-fetching of a video
of size B = 27MBytes is shown in Fig. 5 for both the OTT
and OCP cases and different values of R. The results show
that the OTT scheme incurs moderate losses as compared to the
ideal OCP. In particular, for the median user the OTT scheme
has an increase in energy budget that varies between 1.08 and
1.44, depending on the target datarate. This also reflects in an
increased number of tails experienced by the OTT scheme, as
shown in Fig. 6, where it is shown that the median user incurs
between 1.33 and 1.83 more tails than with the ideal OCP.

C. Optimal Tail Time

The tail time is a design parameter with a major impact
on the energy consumption of mobile data services. At the
same time, determining an optimal value for the tail time is
not trivial since it needs to account for complex user behavior
[10] and specific services. In some cases larger values of tail
time can be beneficial for certain types of traffic while in some
other cases [11] mobile terminals can waste up to 30% of their
energy in tail times. These contrasting objectives are clearly
illustrated in [9], where the authors showed that increasing
the tail time saved 30% of the energy for a particular app,
while wasting 41% for another app, thus leading to a net loss
of 11%. Current proposals are covering a broad spectrum of
solutions, with on the one hand methods like fast dormancy,
designed to shorten the tail time, but difficult to implement
and therefore potentially leading to limited gains. On the other
extreme, other researches are aiming at reusing the tail time for
pushing content [12]. In agreement with [13] we believe that
the tail duration should be adaptive, optimizing its duration in
function of the specific services that are provided. In particular,
while performing content pre-fetching, the tail time should be
minimized, provided that the mobile operators can be made
aware, e.g through the ActiveCast API, when they are serving
pre-fetching traffic.

VII. CONCLUSIONS

The key system components of ActiveCast, a novel context-
aware paradigm for content delivery in mobile networks, have

been presented and experimentally evaluated in respect of video
provision services. By adopting an opportunistic content pre-
fetching scheme, which exploits information on content access
probability to select appropriate datarate requirements for con-
tent pre-fetching, the ActiveCast system has been shown to
deliver predictable energy costs for content pre-fetching and
that these are significantly lower than the energy costs currently
achievable with video streaming content provision.

In order to perform the experimental evaluations presented
in this paper, the entire components of the ActiveCast system,
together with an API for content providers and mobile operators
as well as an Android mobile application have been developed
and included into a “living laboratory” testbed, allowing to
perform the actual performance evaluation of novel services in
real networks, with real users and mobile devices.

By tracking achievable data rates in different times and
locations we have also gathered relevant evidence to support
the definition of novel and more flexible SLAs with content
providers, providing strict guarantees on the upper bounds of
the delivery delays while allowing to optimize the energy budget
invested by both the users’ devices and the wide area networks
to complete the download of content in the user terminals. The
evaluation of different SLAs for content pre-fetching and the
validation of the associated business models constitute one of
the key directions of our current research. At the same time,
we are also currently pursuing opening the ActiveCast API to
a set of selected content providers and increase the size of our
testbed user base by opening the ActiveCast app on the Android
market and the AppStore.
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